

BLM Remote Sensing

BLM's Landscape Approach

AIM Foundations

- Acquiring, assessing, and reporting information through the integration of fundamental processes, including:
 - application of a consistent set of core quantitative indicators and consistent collection methods;
 - implementation of a statistically valid, scalable sampling framework;
 - application and integration of remote sensing technologies to the maximum extent possible;
 - implementation and use of related data acquisition and management plans (e.g., GSSP, EGIS, etc.)

Core Indicators & Methods

- Three Core Methods for Six Core Indicators
 - Line-point intercept + species search
 - 1. Bare ground
 - 2. Vegetation composition
 - 3. Non-native invasive species
 - 4. Plant species of management concern
 - Height along selected LPI points
 - 5. Vegetation height
 - Canopy gap intercept
 - 6. Proportion of soil in large inter-canopy gaps (when gaps present)

Sample Design

Extensive Sampling*

- Low density network of sampling locations
- Non-forested BLMmanaged lands nationwide
- Designed initially to meet regional/national needs
- Insufficient number of samples for local management needs

^{*}Hypothetical points for illustration only

Sample Design

Extensive Sampling*

 Low density network of sampling locations

Intensive Sampling

- Higher-density sampling
- Designed to meet local management needs
- Can make-use of extensive samples
- Insufficient coverage to use alone for national/ regional needs
- Can be folded into

 *Hypoth**extensive inetwork**Into

 improve estimates

Sample Design

Extensive Sampling*

 Low density network of sampling locations

Intensive Sampling*

 Higher-density sampling for local management needs

Integrated Sampling

- Intensive data combined with extensive network
- Increases precision of extensive sampling resource estimates
- Comparability of resource values across scales and jurisdictions

^{*}Hypothetical points for illustration only

Field Data

Collecting and calculating Core Indicators

Sagebrush cover example

- Line-point intercept
- Produce plot-level estimates from points along transects

% Sagebrush Cover =
Sagebrush "hits" (over all transects)
total # of transect points

% Sagebrush = 58/150 = 38.67%

This is a plot-level estimate

Remote Sensing Integration

- Using field and remote sensing data together to derive reliable information
- Examples include
 - Percent cover continuous data models
 - Status and trend, with location and abundance
 - Landscape ecology (connectivity, patch size, etc.)
 - Surface disturbance mapping
 - Change detection
 - Field data to train/validate RS products
 - RS data to aid selection of field sampling locations

Field Level Remote Sensing

Fire Example

- Two fires in Southwest Idaho: Big Hill and Blair
- Boise District Office requests need for imagery
- Emergency Stabilization and Rehab (ES&R) are developing their plan
- Not successful in acquiring cloud-free Landsat
- Needed data as fast as possible
 - Had a short-term option
 - Need a long-term one

Work flow

- Acquire RapidEye Imagery
 - Downloaded data within a day and half of request
- Pre-process data
- Publish image service for base imagery
 - 30 Minutes of downloading
- Image Classification
 - Segmentation in eCognition
 - Collect training samples on the image
 - Perform burned vs unburned classification
- Publish final web service with imagery and classification
 - Half a day of work
- Share data with partners for further processing

Legal Example

- Water Rights Dispute over the de-watering of the Needle Point Spring
- Request from the Richfield, UT Field Office
- Build historical chronology of center pivot agricultural field development
- Searched, downloaded, and prepared Landsat imagery – Week of Work
- Need: Map Service to consume Landsat imagery
 - WELD

Powder River Mapping & Monitoring

- Quantify in-stream habitats
 - Mapping verses Sampling
- Monitor in-stream habitats under different flow rates
 - Intra-annual and Inter-annual
- Derived measurements of channel properties
 - Index of Bank Stability
- Map riparian vegetation and invasive species
- Test new methods for developing stereo models from Very Large Scale Aerial (VLSA) photography

Powder River Monitoring

- Orthoimages and Digital Terrain Models for 2008, 2009, and 2010.
- Both orthoimages and DTMs are derived from stereo aerial photos
- Resolution = 0.1m; Absolute Accuracy ~0.75m;
 Relative Accuracy ~0.02m for one model

